超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
Che Jun
Research Associate Professor
chej@mail.sustech.edu.cn

SELF-INTRODUCTION

Dr. Jun Che completed his Ph.D. degree in UT Health San Antonio in 2015 and remained work in UTHSA from 2015 to 2020 as a postdoctoral research fellow before joining the school of medicine as a research associate professor in Sustech. He has been focusing on topics in DNA repair/recombination and DNA damage tolerance in budding yeast cells. So far, he has published 8 articles in prestigious journals such as Nature Structural & Molecular biology, the EMBO Journal, PLoS Genetics, Microbial Cell et al.

 

EDUCATION:

2008-2015 Ph.D.   UT Health San Antonio  USA

2004-2007 Master  Kunming Institute of Zoology, Chinese Academy of sciences

2000-2004 Bachelor of Engineering      Xi’an Jiaotong University, China

 

WORKING EXPERIENCE:

12/2020-  Research Associate Professor, Southern University of Science and Technology

08/2015-10/2020 Post-doctoral fellow, UT Health San Antonio, USA

01/2008-07/2008 Project manager, Beijing Genome institute

 

HONORS AND AWARDS:

 

2nd place in oral presentation in 2019 department retreat

Best poster presentation at NCI T32 and CPRIT Joint Annual Retreat June 2013

CPRIT predocteral fellowship 2011,2012

XJTU Campus Scholarship 2000, 2001, 2002, 2003;

 

Research:

From prokaryotic to eukaryotic, DNA lesions occur frequenctly in every single cell everyday ( ~1 lesion/ 10kb DNA). Although a large portion of lesions can be eliminated by several sophisticated DNA repair pathways, unrepaired DNA lesions can severely interfere with DNA templated processes, such as DNA replication and transcription. During DNA replication, a cell can temporarily bypass these DNA lesions instead of removing them, thus ensuring the completion of DNA replication in time. This process is called DNA damage tolerance (DDT), a major mechanism  for generating mutations and chromosomal rearrangements. Thus, this process is related to many areas of biomedical research.

DDT contains two pathways:  transleion synthesis (TLS) and template switching (TS). Although DDT has been studied for nearly a half century, many important questions remain unanswered. For example, how are TLS and TS chosen by cells? When does TLS/TS take place, right at stalled replication fork or behind replication fork in a post-replicative manner? How does polyubiquitination (K63-linkaged) of PCNA K164 promotes TS ?

I have been studying these questions in the model organism Saccharomyces cerevisiae for several years and have made significant progress recently. I have developed a few unique genetic and molecular tools as well as discovered new genes and regulatory mechanisms in the DDT process, which lies an important foundation for answering the above-mentioned problems in the field. The study in this field is critical for helping understanding tumorigenesis, aging,drug resistance and new drug design in the future.

 

MANUSCRIPT REVIEWER AND EDITOR

Metabolic Brain Disease(reviewer)

 

PUBLICATIONS

1 Li X, McConnell K, Che J, Ha C, Lee SE, Kirby N, Shim EY. DNA Dosimeter Measurement of Relative Biological Effectiveness for 160 kVp and 6 MV X Rays. Radiat Res 2020 Aug 1;194(2):173-179.

2 Lee K, Ji JH, Yoon K, Che J, Seol JH, Lee SE, Shim EY. Microhomology Selection for Microhomology Mediated End Joining in Saccharomyces cerevisiae. Genes (Basel). 2019 Apr 8;10(4).

3 Li F, Wang Q, Seol JH, Che J, Lu X, Shim EY, Lee SE, Niu H. Apn2 resolves blocked 3' ends and suppresses Top1-induced mutagenesis at genomic rNMP sites. Nat Struct Mol Biol. 2019 Mar; 26 (3):155-163.

4 Klein HL, Ba?inskaja G, Che J, Cheblal A, et al, Guidelines for DNA recombination and repair studies: Cellular assays of DNA repair pathways. Microb Cell. 2019 Jan 7;6(1):1-64.

5 Jun Che, Stephanie Smith, Yoo Jung Kim, Eun Yong Shim, Kyungjae Myung & Sang Eun Lee. Hyper-acetylation of Histone H3 K56 limits break-induced replication by inhibiting extensive repair synthesis. PLoS Genetics 2015 Feb 23;11(2):e1004990.

6 Sung S, Li F, Park YB Kim JS, Kim AK, Song OK, Kim J, Che J, Lee SE, Cho Y. DNA end recognition by the Mre11 nuclease dimer: insights into resection and repair of damaged DNA EMBO J. 2014 Aug 8. pii: e201488299. [Epub ahead of print]

7 Niu AL, Wang YQ, Zhang H, Liao CH, Wang JK, Zhang R, Che J, Su B. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function. BMC Evolutionary Biology 2011, 11:298

8 Che J, Wang J, Su W, Ye J, Wang Y, Nie W, Yang F, Construction, characterization and FISH mapping of a bacterial artificial chromosome library of Chinese pangolin (Manis pentadactyla). Cytogenet Genome Res, 2008. 122(1): p. 55-60.

 

 

百家乐高额投注| 大连百家乐食品| 金界百家乐的玩法技巧和规则| 扑克王百家乐的玩法技巧和规则 | 在线百家乐官网博彩| 怎样玩百家乐赢钱| 潼关县| e世博百家乐官网技巧| 罗盘24方位| 金百家乐官网博彩公司| 24 山杨公斗首择日吉凶| 威尼斯人娱乐城正规吗| 百家乐官网洗码软件| 免费百家乐规律| 华盛顿百家乐的玩法技巧和规则 | 皇马百家乐的玩法技巧和规则| 百家乐官网看牌技巧| 百家乐官网群shozo| 大发888 dafa888 大发官网| 百家乐官网对保| 网上百家乐娱乐平台| 六枝特区| 百家乐视频下载| 真人百家乐软件博彩吧| 视频棋牌游戏| 御匾会百家乐官网的玩法技巧和规则| 大发888官方 论坛| 百家乐官网7scs娱乐场| 幸运水果机电脑版| 百家乐官网庄闲点| 大发888dafa888| 百家乐官网投注窍门| 公海百家乐的玩法技巧和规则| 百家乐官网高档筹码| 百家乐官网筹码方形筹码| 百家乐官网骗局视频| bet365国际娱乐| 24山九宫飞星详解| 皇冠现金网址| 宝龙百家乐官网娱乐城| 百家乐官网7scs|