超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
CHEN Yuanzhen
Associate Professor
0755-88018226
chenyz@sustech.edu.cn

Research Interest

The research interest of our team is experimental investigation of superconducting quantum computation and quantum simulation.

As the means and precision of manipulating quantum systems have advanced, the idea of quantum information, namely, processing information based on the basic principles of quantum mechanics, has also become more plausible. Quantum information processing uses quantum resources that have no classical counterparts, such as quantum superposition and entanglement, to process information, and has been shown, both theoretically and experimentally, to have tremendous advantage over classical information processing in certain scenarios. For example, quantum algorithms for integer factorization and searching unsorted database are much more efficient then known classical algorithms. Furthermore, classical simulation of a quantum system is believed to be practically intractable, while quantum simulation, using one quantum system to simulate another one, may be a straightforward and natural solution.

Among the various proposed schemes of realizing quantum computation and quantum simulation, the one based on superconducting quantum circuits appears to be promising, due to the fact that such circuits are relatively easy to fabricate, control, and scale up. Using quantum circuits based on superconducting Josephson junctions, we can build the basic block for quantum information processing, namely, the qubits (quantum bits), as well as controllable coupling between qubits. It is believed by many researchers that quantum computation based on superconducting circuits may first reach the so called Quantum Supremacy, a clear demonstration of the ability of quantum computing devices to solve problems that classical computers practically cannot.

Our team devotes to experimentally advancing the field of superconducting quantum computation and quantum simulation. The current research focus includes:

1. Superconducting quantum chips. We use Josephson-junction-based superconducting quantum devices to build qubits and various qubit-coupling schemes, as well as measurement apparatus approaching quantum limits. Besides widely adapted design, we are also interested in developing novel architectures such as hybrid quantum systems that couple superconducting circuits and other quantum devices.

2. Quantum computation and quantum simulation based on superconducting circuits. We closely collaborate with theorists to explore the possibility of realizing quantum computation and quantum simulation on superconducting quantum chips. Our current interest includes, but limited to, geometric quantum computation, quantum automata, quantum few-body systems, and quantum simulation of exemplary models in condensed matter physics. In addition, we always have a keen interest in using superconducting quantum systems to explore fundamental issues of quantum mechanics.

 

Professional Experience

◆2021/7 - present: Southern University of Science and Technology, Associate Professor

◆2015/3 - 2021/7: Southern University of Science and Technology, Assistant Professor

◆2009/1 - 2015/2: Rutgers, the State University of New Jersey, Research Associate

◆2006/7 - 2008/7: University of Pennsylvania, Postdoctoral Fellow

◆2005/6 - 2006/6: University of South Carolina, Postdoctoral Fellow

 

Educational Background

◆1998/9 - 2005/5: University of Maryland, Ph.D.

◆1995/9 - 1998/6: Chinese Academy of Sciences, Institute of Semiconductors, M.S.

◆1991/9 - 1995/6: University of Electronic Science and Technology of China, B.S.

 

Selected Publications

1.Robust Quantum Gates against Correlated Noise in Integrated Quantum Chips,

Kangyuan Yi, Yong-Ju Hai, Kai Luo, Ji Chu, Libo Zhang, Yuxuan Zhou, Yao Song, Song Liu, Tongxing Yan*, Xiu-Hao Deng*, Yuanzhen Chen*, and Dapeng Yu,

Phys. Rev. Lett.132. 250604  (2024).

 

2.Experimental realization of two qutrits gate with tunable coupling in superconducting circuits,

Kai Luo, Wenhui Huang, Ziyu Tao, Libo Zhang, Yuxuan Zhou, Ji Chu, Wuxin Liu, Biying Wang, Jiangyu Cui, Song Liu, Fei Yan, Man-Hong Yung*, Yuanzhen Chen*, Tongxing Yan*, and Dapeng Yu, Phys. Rev. Lett. 130, 030603 (2023).

 

3.Experimental realization of phase-controlled dynamics with hybrid digital-analog approach,

Ziyu Tao, Libo Zhang, Xiaole Li, Jingjing Niu, Kai Luo, Kuangyuan Yi, Yuxuan Zhou, Hao Jia, Song Liu*, Tongxing Yan*, Yuanzhen Chen*, Dapeng Yu,

npj Quantum Information 7:73 (2021).

 

4.Simulation of higher-order topological phases and related topological phase transitions in a superconducting qubit,  

Jingjing Niu, Tongxing Yan, Yuxuan Zhou, Ziyu Tao, Xiaole Li, Weiyang Liu,

Libo Zhang, Hao Jia, Song Liu*, Zhongbo Yan*, Yuanzhen Chen*, and Dapeng Yu,

Science Bulletin 66, 1168 (2021).

 

5.Experimental realization of non-adiabatic shortcut to non-Abelian geometric gates,   

Tongxing Yan, Bao-Jie Liu, Kai Xu, Chao Song, Song Liu, Zhensheng Zhang, Hui Deng, Zhiguang Yan, Hao Rong, Keqiang Huang, Man-Hong Yung*, Yuanzhen Chen*, and Dapeng Yu, Phys. Rev. Lett. 122, 080501 (2019).

 

Contact

◆Email:chenyz@sustech.edu.cn

◆Tel:0755-88018226

◆Address: Room 130, Research Building 2, Department of Physics, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, China

◆Zipcode:518055

香港六合彩曾道人| 大发888娱乐城建账号| 太阳城百家乐网址--| 大发888娱乐场ylc8| 百家乐平注法到656| 百家乐路纸下| 海王星开户| 同乐城备用| 娱乐城送18元体验金| 比如县| 百家乐官网赢钱皇冠网| 百家乐足球| 百家乐笑话| 泰山百家乐的玩法技巧和规则 | 博之道百家乐的玩法技巧和规则 | 百家乐光纤冼牌机| 大发888真人真钱| 百家乐官网投注必胜法| 百家乐官网策略详解| 大发888客服| 浠水县| 百家乐官网赌场彩| 娱乐城百家乐高手| 全讯网开户| 鸡泽县| 新濠峰百家乐官网的玩法技巧和规则| 百家乐防伪筹码套装| 四海资迅| 澳门百家乐代理| 老虎机在线ap888| 赌百家乐官网赢的奥妙| 乐宝百家乐游戏| 网上棋牌游戏赚钱| 百家乐官网记牌器| 百家乐专家赢钱打法| 巴登娱乐城开户| 御匾会百家乐官网的玩法技巧和规则 | 芝加哥百家乐官网的玩法技巧和规则| 东莞水果机遥控器| 百家乐官网最低投注| 破解百家乐官网游戏机|