超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
Iryna kashuba
Associate Professor

Education Experience:
Ph D in Mathematics, Universidade de S?ao Paulo, Brazil April  2000 –July 2004
MS in Mathematics, Kaiserslautern University, Germany September  1997 – March 2000
BS in Mathematics, Taras Shevchenko National September  1993 – July 1997

Work Experience:
Associate professor, Southern University of Science and Technology  2023-present
Associate professor, Universidade de S?ao Paulo  2013 - 2023
Assistant professor, Universidade de S?ao Paulo  2006 - 2013

 

Publications:
1. L. Bezerra, L. Calixto, V. Futorny, I. Kashuba, Representations of affiffiffine Lie superalgebras and their quantization in type A, Journal of Algebra 611, (2022), 320–340.
2. M. Guerrini, I. Kashuba, O. Morales, A. Oliveira, F. Santos Generalized Imaginary Verma and Wakimoto modules, Journal of Pure and Applied Algebra, 227, (2023), no. 7, 1–18.
3. Kashuba I., Mathieu O., ”O(jiān)n the free Jordan algebras”, Advances in Math., 383, (2021), 107690.
4. Borges V., Kashuba I., Sergeichuk V., Sodre E., Zaidan A., ”Classifification of Linear operators satisfying (Au, v) = (u, Arv) or (Au, Arv) = (u, v) on a vector space with indefifinite scalar product”, Linear Algebra and Appl., 611, (2021), 118-134.
5. Kashuba I., Serganova, V., ”Representations of simple Jordan superalgebra”, Advances in Math., 370, (2020), 107218.
6. Kashuba I., Futorny, V., ”Structure of parabolically induced modules for Affiffiffine Kac-Moody algebras”, Journal of Algebra, 500, (2018), 362-374.
7. Kashuba I., Martin, M. E., ”Geometric classifification of nilpotent Jordan algebras of dimension fifive”, Journal of Pure and Applied Algebra, 222 (3), (2018), 546-559.
8. Holubowski W., Kashuba I., Zurek S., ”Derivations of the Lie algebra of infifinite strictly upper triangular matrices over a commutative ring”, Comms. in Algebra, 45 (11), (2017), 4679-4685.
9. Kashuba I., Serganova, V., ”O(jiān)n the Tits-Kantor-Koecher construction of unital Jordan bimodules”, Journal of Algebra, 481, (2017), 420-463.
10. Kashuba I., Ovsienko S., Shestakov I., ”O(jiān)n representation type of Jordan basic algebras”, Algebra and Discrete Mathematics, 23 (1), (2017), 47-61.
11. Kashuba I., Martin, M. E., ”The variety of three-dimensional real Jordan algebras”, Journal of Algebra and Appl, 15 (8), (2016), 1650158.
12. Kashuba I., Zelenyuk Yu., ”The number of symmetric colorings of the dihedral group D3”, Quaestiones Mathematicae, 39(1), (2016), 65-71.
13. Kashuba I., Martin, M. E., ”Deformations of Jordan algebras of dimension four”, Journal of Algebra, 399, (2014), 277-289.
14. Kashuba I., Martin R., ”Free fifield realizations of induced modules for affiffiffine Lie algebras”, Communications in Algebra, 42 (6), (2014), 2428-2441.
15. Bekkert V., Benkart G., Futorny V., Kashuba I., ”New irreducible modules for Heisenberg and affiffiffine Lie algebras”, Journal of Algebra, 373, (2013), 284-298.
16. Hrivnak J., Kashuba I., Patera J., ”O(jiān)n E-functions of semi-simple Lie groups”, J.Physics A: Math. Gen., 44, (2011), 325205.
17. Kashuba I., Ovsienko S., Shestakov I., ”Representation type of Jordan algebras”, Advances in Math. , 226, (2011), 385-418.
18. Kashuba I., Shestakov I., ”An estimate of a dimension of a variety of alternative and Jordan algebras”, Contemporary Mathematics, 499, (2009), 165-171.
19. Futorny V., Kashuba I., ”Induced Modules for Affiffiffine Lie Algebras”, SIGMA, 5, (2009), 026.
20. Kashuba I., Patera J., ”Discrete and continuous exponential transform generalized to semisimple Lie groups of rank two”, J.Physics A: Math. Gen. 40 (2007), 4751-4774.
21. Kashuba, I. ; Shestakov, I., ”Jordan algebras of dimension three: geometric classifification and rep-resentation type”, In: XVI Coloquio Latinoamericano de ′Algebra, 2007, Colonia del Sacramento. Revista Matem′atica Iberoamericana.
22. Kashuba I., ”Variety of Jordan algebras in small dimensions”, Algebra Discrete Math., 2, (2006), 62-76.
23. Drozd Yu., Greuel G.-M., Kashuba I., ”O(jiān)n Cohen-Macaulay modules on surface singularities”, Moscow Mathematical Journal, 3 (2003), 397-418.
24. Kashuba I., Patera J., ”Graded contractions of Jordan algebras and of their representations”, J.Physics A: Math. Gen. 36 (2003), 12453-12473.
25. Futorny V., Kashuba I., ”Verma type modules for toroidal Lie algebras”, Communications in Algebra, 28 (8), (1999).


凌龙棋牌官方下载| 百家乐筹码桌| 速博百家乐官网的玩法技巧和规则| 大杀器百家乐学院| 凯旋国际| 七胜百家乐官网娱乐| 百家乐视频桌球| 大发888官方 hplsj| 百家乐官网娱乐优惠| 壹贰博网址| 24山亥山巳向造葬日课| 大发888娱乐代理| 中骏百家乐官网的玩法技巧和规则| 六合彩图片| 希尔顿百家乐官网娱乐城 | 吕百家乐官网赢钱律| 成都市| 百家乐77scs官| 宝马会百家乐官网的玩法技巧和规则 | 百家乐官网游戏分析| 百家乐真人大头贴| 临安市| 大发888送彩金| 百家乐路单资料| 青浦区| 云鼎娱乐场网址| 送现金百家乐的玩法技巧和规则 | A8百家乐官网游戏| 皇冠现金网导航| 太阳城代理最新网址| 菲律宾百家乐官网开户| 大发888娱乐场下载远程| 百家乐台布哪里有卖| 大桥下做生意风水好吗| 真人百家乐官网国际第一品牌| 百家乐官网怎么注册| 大发888亚洲游戏| 澳门百家乐真人斗地主| 历史| 百家乐扑克牌手机壳| 百家乐庄家怎样赚钱|