超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
Qin LI
Associate Researcher
liqin@sustech.edu.cn

Essential Information

Name:Qin LI

Position:Associate Researcher

Highest Degree:Doctor of Philosophy in Mathematics

Email:liqin@sustech.edu.cn

Research Field:Mathematical foundation of Quantum Field Theory


Educational Background

2001-2005, University of Science and Technology of China, B.S. in Mathematics , USTC, July 2005

2005-2011, University of California at Berkeley, Ph.D. in Mathematics, UC Berkeley, May 2011


Working Experience

2011.9-2015.7, School of Mathematical Sciences, University of Science and Technology of China, Assistant Professor

2013.6-2015.7, Department of Mathematics, The Chinese University of Hong Kong, Postdoctoral fellow

2015.7-2021.9, Department of Mathematics, Southern University of Science and Technology, Assistant Professor

2021.10- present, Institute for Quantum Sciences, Southern University of Science and Technology, Associate Researcher


Papers and Patents

(1).  “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Ka?hler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Pro-ceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017), 575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.

 


实战百家乐十大取胜原因百分百战胜百家乐不买币不吹牛只你能做到按我说的.百家乐基本规则 | 澳门赌场招聘网| 破解百家乐官网游戏机| 斗首24山择日天机择日| 百家乐出庄概率| 真人博彩| 做生意挂什么画招财| 百家乐博彩通网| 赌博百家乐趋势把握| 威尼斯人娱乐城网站| 速博百家乐官网的玩法技巧和规则| 三元风水24山水法| 大发888金皇冠娱乐城| 百家乐官网投注组合| 百家乐官网娱乐网77scs| 百家乐视频游戏掉线| 大发888信誉最新娱乐| 海立方娱乐城线路| 保单百家乐游戏机| 娱乐城开户免存送现金| 欧博线上娱乐| 博天堂百家乐官网的玩法技巧和规则 | 百家乐赌王有哪些| 百家乐官网太阳城怎么样| 2024年九运| 网络百家乐官网可靠吗| 关于阳宅风水24山知识| 体育博彩概论| 有关百家乐玩家论坛| 利川市| 网上百家乐合法吗| 现金网制作| 金樽百家乐官网的玩法技巧和规则| 百家乐筹码套装包邮| 哪个百家乐官网最好| 德州百家乐官网扑克牌| 网上百家乐官网是假还是真的| 大世界百家乐娱乐场| 百家乐官网的赚钱原理| 闲和庄百家乐娱乐平台| 百家乐官网傻瓜式投注法|