超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
Qin LI
Associate Researcher
liqin@sustech.edu.cn

Essential Information

Name:Qin LI

Position:Associate Researcher

Highest Degree:Doctor of Philosophy in Mathematics

Email:liqin@sustech.edu.cn

Research Field:Mathematical foundation of Quantum Field Theory


Educational Background

2001-2005, University of Science and Technology of China, B.S. in Mathematics , USTC, July 2005

2005-2011, University of California at Berkeley, Ph.D. in Mathematics, UC Berkeley, May 2011


Working Experience

2011.9-2015.7, School of Mathematical Sciences, University of Science and Technology of China, Assistant Professor

2013.6-2015.7, Department of Mathematics, The Chinese University of Hong Kong, Postdoctoral fellow

2015.7-2021.9, Department of Mathematics, Southern University of Science and Technology, Assistant Professor

2021.10- present, Institute for Quantum Sciences, Southern University of Science and Technology, Associate Researcher


Papers and Patents

(1).  “Bargmann-Fock sheaves on Ka?hler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Ka?hler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Pro-ceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017), 575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Ka?hler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.

 


百家乐官网下注口诀| 百家乐乐翻天| 百家乐洗码| 百家乐官网事一箩筐的微博| 玄空飞星 24山 何??| 乐宝百家乐的玩法技巧和规则| 老虎机控制器| 333娱乐场| 桦川县| 谢通门县| 单机百家乐官网的玩法技巧和规则| 百家乐北京| 永仁县| 保单百家乐路单| 娱乐城注册送现金| 游艇会百家乐官网的玩法技巧和规则 | 火箭百家乐的玩法技巧和规则| 百家乐赌场筹码| 69棋牌游戏| 百家乐官网庄闲庄庄闲| 火箭百家乐的玩法技巧和规则 | 百家乐官网一邱大师打法| 广州百家乐赌场娱乐网规则| 同乐城| 百家乐大小是什么| 朝阳县| 百家乐官网系统足球博彩通| 百家乐官网平玩法几副牌| 扬州棋牌中心| 找真人百家乐官网的玩法技巧和规则 | 大发888娱乐场网址| 娱乐百家乐官网下载| 莆田市| 百家乐最新首存优惠| 百家乐官网赌博规律| 大发888 护栏| 网络百家乐破解器| 百家乐官网博彩技巧视频| 大世界娱乐城| 百家百家乐视频游戏世界| 百家乐官网技巧介绍|