超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
Shen Xinke
Research Assistant Professor
shenxk@sustech.edu.cn

Dr. Xinke Shen is a Research Assistant Professor in the Department of Biomedical Engineering at the Southern University of Science and Technology (SUSTech). He received his Bachelor's degree from Beihang University in 2017 and his Ph.D. from Tsinghua University in 2023. He joined SUSTech as a postdoctoral researcher in 2023 and was honored as a "President’s Distinguished Postdoctoral Fellow." Dr. Shen’s research focuses on brain-computer interfaces (BCI) and affective computing, with the goal of developing emotion-aware BCI systems for mental health monitoring and modulation. He has published 9 first-author or co-first-author papers in internationally renowned journals and conferences, including NeuroImage, IEEE Transactions on Affective Computing, and Advanced Materials, with 2 ESI Highly Cited Papers and total citations exceeding 1,000. He currently leads one Shenzhen Outstanding Scientific Innovation Talent Development (Doctoral Startup) Project and plays a key role in a Shenzhen Major Science and Technology Project. Dr. Shen has filed 4 national invention patents, with 2 already granted. Additionally, he has won awards such as the Second Prize and First Prize in the BCI Brain-Controlled Robot Competition at the World Robot Conference.


Education:

1) 2017.09 - 2023.01: Ph.D., Biomedical Engineering, School of Medicine, Tsinghua University. Advisor: Prof. Sen Song.

2) 2013.09 - 2017.06: B.S., Biomedical Engineering, School of Biological and Medical Engineering, Beihang University.

 

Research Experience:

2023.03 - 2025.03: Postdoctoral Fellow, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology. Advisor: Prof. Quanying Liu.

 

Research Projects:

1) 2024 - 2026: Research on Contrastive Learning-based Emotion Brain-Computer Interface Algorithms (Shenzhen Outstanding Scientific Innovation Talent Development Doctoral Startup Project, ¥300,000, Leader).

2) 2024 - 2025: Development of Key Technologies for a Closed-Loop Neuromodulation System Combining High-Density Transcranial Electrical Stimulation and EEG Recordings (Shenzhen Major Science and Technology Project, ¥2,000,000, Core Contributor).

 

Publications:

1) Shen, X.#, Tao, L.#, Chen, X., Song, S., Liu, Q.*, Zhang, D.* (2024). Contrastive Learning of Shared Spatiotemporal EEG Representations Across Individuals for Naturalistic Neuroscience. Neuroimage, 301: 120890.

2) Shen, X.#, Liu, X.#, Hu, X., Zhang, D.*, & Song, S.* (2022). Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition. IEEE Transactions on Affective Computing, 14 (3): 2496-2511. (ESI Highly Cited Paper)

3) Shen, X., Liu, T.*, Tao, D., Fan, Y., Zhang, J., Li, S., Jiang, J., Zhu, W., Wang, Y., Wang, Y., Brodaty, H., Sachdev., P. & Wen, W. (2018). Variation in longitudinal trajectories of cortical sulci in normal elderly. Neuroimage, 166, 1-9.

4) Shen, X., Hu, X., Liu, S., Song, S., & Zhang, D.* (2020). Exploring EEG microstates for affective computing: decoding valence and arousal experiences during video watching. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 841-846). IEEE.

5) Xue, S.#, Shen, X.#, Zhang, D., Sang, Z., Long, Q., Song, S.*, Wu, J.* (2025). Unveiling frequency-specific microstate correlates of anxiety and depression symptoms[J]. Brain Topography, 38(1): 12.

6) Tang, J.#, Yuan, F.#, Shen, X.#, Wang, Z., Rao, M., He, Y., Sun, Y., Li, X., Zhang, W., Li, Y., Gao, B., Qian, H., Bi, G., Song, S., Yang, J. J.* & Wu, H.* (2019). Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Advanced Materials, 31(49), 1902761. (ESI Highly Cited Paper)

7) Yang, P.#, Shen, X.#, Li, Z., Luo, Z., Lou, K., & Liu, Q. (2023). Perturbing a Neural Network to Infer Effective Connectivity: Evidence from Synthetic EEG Data. IJCAI-AI4TS workshop.

8) Liu, J.#, Shen, X.#, Song, S., & Zhang, D.* (2021). Domain Adaptation for Cross-Subject Emotion Recognition by Subject Clustering. In 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER) (pp. 904-908). IEEE.

9) Shen, X., Li, Y., Liu, J., Song, S., Zhang, D.* (2021). Emotional state decoding using EEG-based microstates of functional connectivity[J]. Chinese Journal of Intelligent Science and Technology, 2021, 3(1): 49-58. 

10) Liu, J., Hu, X., Shen, X., Lv, Z., Song, S., & Zhang, D.* (2023). The EEG microstate representation of discrete emotions. International Journal of Psychophysiology, 186, 33-41.

11) Liu, J., Hu, X., Shen, X., Song, S., & Zhang, D. (2023). Electrophysiological Representations of Multivariate Human Emotion Experience. Cognition and Emotion, 38(3), 378-388.

12) Chen, J., Wang, X., Huang, C., Hu, X., Shen, X., Zhang, D. (2023). A large finer-grained affective computing EEG dataset. Scientific Data, 10(1): 740.

13) Ke, L., Zhang, Y., Fu, Y., Shen, X., Zhang, Y., Ma, X., & Di, Q. (2022). Short-term PM2. 5 exposure and cognitive function: association and neurophysiological mechanisms. Environment International, 107593.

 

Patents:

1) Wang, Z., Shen, X., Xu, J., Xin, S., Fan, H., Wang, H., Zhou, Y., Ren, L., Yangdan, C., Ma, J., Wang, Z., A Neural Network-Based Segmentation Method and System for Hepatic Echinococcosis Lesions. CN201811548266.4[P]. 2019-04-26. (Authorized)

2) Wu, J., Song, S., Xue, S., Shen, X., Sang, Z. Microstate Source Localization Method, Device, Electronic Equipment, and Storage Medium. CN202310752490.X[P]. 2023-10-03. (Authorized)

3) Li, C., Shen, X., Huang, C., Zhang, D. Emotion Recognition Method, Device, Chip, Electronic Equipment, and Medium. CN202211175016.7[P]. 2022-09-26. (Under Review)

4) Zhang, D., Guo, B., Wang, F., Shen, X., Chen, J., Hu, X. EEG Signal Classification Method, Device, Equipment, and Storage Medium. CN202211182344.X[P]. 2022-12-23. (Under Review)

tt娱乐城官网| 百家乐官网娱乐城棋牌| 同花顺百家乐娱乐城| 百家乐怎样发牌| 百家乐游戏玩法技巧| 百家乐官网棋牌游戏皇冠网| 百家乐官网水晶筹码价格| 大安市| 现场百家乐官网百家乐官网| 百家乐官网正网包杀| 百家乐官网真人游戏娱乐网| 澳门百家乐赢钱窍门| 大发888娱乐网下| 百家乐官网必学技巧| 百家乐玩法教材| 视频百家乐游戏| 大发888娱乐城xiazai| 六合投注系统| 百家乐官网奥| 百家乐视频多开| 大发888娱乐城电话| 百家乐布| 百家乐suncity| 免费百家乐游戏机| 幸运水果机电脑版| 网上赌博网址| 百家乐官网经验之谈| 百家乐官网网上真钱娱乐| 皇家百家乐官网的玩法技巧和规则| 百家乐筹码14克粘土| TT百家乐官网现金网| 战胜百家乐的技巧| 威尼斯人娱乐城代理佣金| 中国足球竞猜| 澳门百家乐技巧皇冠网| 百家乐大小技巧| 盈禾体育| 百家乐官网单注打| 大发888娱乐真钱游戏 官方| 百家乐官网积分| 百家乐园百利宫娱乐城怎么样百家乐园百利宫娱乐城如何 |