超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
Hao Wang
Associate Researcher
wangh@sustech.edu.cn

Research Field

condensed matter theory, fractional quantum Hall effect system

 

Educational Background

2000.08-2006.12, Ph.D. (condensed matter physics), University of Minnesota, USA

1997.09-2000.07 M.S. (condensed matter physics), Tsinghua University

1992.09-1997.07 B.S. (modern applied physics), Tsinghua University

 

Working Experience

2013.02-2018.08 Assistant Professor, Department of Physics, Southern University of Science and Technology

2011.08-2013.02? Postdoc/Research Assistant Professor, Department of Physics, University of Hong Kong

2009.08-2011.08? Postdoc, Department of Physics, Virginia Tech., USA

2007.01-2009.08? Postdoc, Department of Physics, California State University at Northridge, USA

 

Papers and Patents

1. Possible half-metallic phase in bilayer graphene: Calculations based on mean-field theory applied to a two-layer Hubbard model, Jie Yuan, Dong-Hui Xu, Hao Wang, Yi Zhou, Jin-Hua Gao, and Fu-Chun Zhang, Phys. Rev. B 88, 201109(R) (2013).
2. Layer antiferromagnetic ground state in bilayer graphene: a first-principle investigation, Yong

Wang, Hao Wang, Jin-hua Gao, and Fu-chun Zhang, Phys. Rev. B 87, 195413 (2013).

3. Flat band electrons and interactions in rhombohedral trilayer graphene, Hao Wang, Jin-Hua Gao, and Fu-Chun Zhang, Phys. Rev. B 87, 155116 (2013).
4. Fractional quantum Hall states in two-dimensional electron systems with anisotropic interactions, Hao Wang, Rajesh Narayanan, Xin Wan, and Funchun Zhang, Phys. Rev. B 86, 035122 (2012).
5. Models of strong interaction in flat-band graphene nanoribbons: magnetic quantum crystals, Hao Wang and V. W. Scarola, Phys. Rev. B 85, 075438 (2012).
6. Jastrow-correlated wavefunctions for flat-band lattices, Hao Wang and V. W. Scarola, Phys. Rev. B 83, 245109 (2011).
7. Identifying quantum topological phases through statistical correlation, Hao Wang, B. Bauer, M. Troyer, and V. W. Scarola, Phys. Rev. B 83, 115119 (2011).
8. Particle-hole symmetry breaking and 5/2 fractional quantum hall effect, Hao Wang, D. N. Sheng, and F. D. M. Haldane, Phys. Rev. B 80, 241311(R) (2009).
9. Broken-symmetry states of Dirac fermions in graphene with a partially filled high landau level, Hao Wang, D. N. Sheng, L. Sheng, and F. D. M. Haldane, Phys. Rev. Lett. 100, 116802 (2008).
10. Unconventional magnetic vortex structures observed in micromagnetic simulations, M. Yan, H. Wang, and C. E. Campbell, J. Magn. Magn. Mater. 320,?1937?(2008).
11.

 

Spin dynamics of a magnetic anitvortex: micromagnetic simulations, Hao Wang and C. E. Campbell, Phys. Rev. B 76, 220407(R) (2007).
12. Vorticity and antivorticity in submicron ferromagnetic films, Hao Wang, M. Yan and C. E. Campbell, Int. J. Mod. Phys. B 21, 2289 (2007).
13. Spin wave modes in thin-film ferromagnetic stripes, M. Yan, H. Wang, P. A. Crowell, C. E. Campbell, and C. Bayer, Condensed Matter Theories, vol. 20, Ed. J. W. Clark, R. M. Panoff, and H. Li, Nova Scientific, New York, 251-263 (2006).
14. Spin waves in an inhomogeneously magnetized stripe, C. Bayer, J. P. Park, H. Wang, M. Yan, C. E. Campbell, and P. A. Crowell, Phys. Rev. B 69, 134401 (2004).
15. Spin-resonant suppression and enhancement in ZnSe/Zn1-xMnxSe multiplayer heterostructures, Y. Guo, B.-L. Gu, H. Wang, and Y. Kawazoe, Phys. Rev. B 63, 214415 (2001).
16. Spin-polarized transport through a ZnSe/Zn1-xMnxSe heterostructure under an applied electric field, Y. Guo, H. Wang, B.-L. Gu, and Y. Kawazoe, J. Appl. Phys. 88, 6614 (2000).
17. Electric-field effects on electronic tunneling transport in magnetic barrier structures, Y. Guo, H. Wang, B.-L. Gu, and Y. Kawazoe, Phys. Rev. B 61, 1728 (2000).
18. Electron coherent tunneling in low-dimensional magnetic quantum structures, Yong Guo, Hao Wang, Bing-Lin Gu, and Yoshiyuki Kawazoe, Physica E 8, 146 (2000).
19. Wave-vector-dependent tunneling transmission characteristics in periodic and quasiperiodic semiconductor supperlattices, Guo Yong, Wang Hao, and Gu Bing-Lin, Tsinghua Science and Technology 5(2), (2000).
20. Transport of electrons in double-barrier magnetic structures under a constant electric field, Wang Hao, Guo Yong, and Gu Bing-Lin, Acta Physics Sinica 48(9), 1723 (1999).

 

金宝网| 真人百家乐官网试玩账号| 大发888娱乐场游戏| 百家乐官网官网站| 现金网hg8568.com| KK百家乐官网娱乐城| 百家乐赌场技巧大全| 百家乐官网优博u2bet| 百家乐网上投注文章| 星座| 威尼斯人娱乐城会员| 百家乐出千技巧| 百家乐官网软件代打| 足球百家乐系统| 连环百家乐官网怎么玩| 同德县| 大家旺百家乐的玩法技巧和规则| 兄弟百家乐官网的玩法技巧和规则| 盛世国际娱乐场| 真人百家乐怎么对冲| 申博百家乐官网有假吗| 777博彩| 德州扑克排名| 战神百家乐的玩法技巧和规则| 百家乐官网的出牌技巧| 百家乐官网发牌| 大发888在线娱乐合作伙伴| 武汉百家乐官网庄闲和| 大发888游戏破解软件| 真人百家乐斗地主| 百家乐如何看牌| 盈禾娱乐城| 百家乐网上真钱赌场娱乐网规则 | 真人百家乐官网蓝盾娱乐平台| 战神百家乐官网娱乐| 百家乐破解方法技巧| 丽星百家乐官网的玩法技巧和规则 | 百家乐游戏平台架设| 百家乐官网送钱平台| 郑州百家乐官网的玩法技巧和规则 | 兄弟百家乐的玩法技巧和规则|