超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
WANG Hongqiang
Associate Professor
wanghq6@sustech.edu.cn


Homepage: wanglab.mee.sustech.edu.cn


Actuators are the primary basis in machines. They fundamentally determine the functions of machines and potentially affect their applications, and therefore, promote symbolic social progress (e.g., steam engines for the age of steam and electric motors for the age of electricity). Nowadays, however, the weakness and inadequacy of vastly used electromagnetic motors are impeding the technology progress in at least three significant fields: 1) for medical robots, actuators possessing satisfactory performances, e.g., compact size, high accuracy, and large stroke, remain to be developed; 2) bioinspired robots, particularly insect-inspired ones that limit by current actuators, are still not comparable to their natural counterparts regarding agility, robustness, and strength; 3) humanoid robots with conventional motors are not friendly enough to human collaborators, and soft, powerful, efficient, and accurately controllable actuators are highly desired.

 

To fundamentally address these problems, we have been exploring new approaches by rethinking basic principles and structures of actuators, and hence, implementing novel actuators distinguished from the conventional ones. Electrostatic actuation has drawn our vital interests due to its favorable features such as scalability, flexibility, lightweight, and low profile. We implemented a series of electrostatic film actuators and, by exploiting them, developed various robots with unique features (e.g., ultra-thin flexible climbing robots). We have also studied other actuation methods, such as flexible ionic polymer-metal composites for dexterous manipulators and an explosive actuator with a considerably high force-to-weight ratio for insect-scale water-air hybrid flying robots. In our future work, we will continue with this research methodology to implement more desirable novel actuators by exploring the basic physic principles and utilize them to build distinctive and valuable robots.

 

Research Areas:

◆ Electrostatic film actuators

◆ Electrostatic adhesion

◆ Ionic polymer-metal composite (IPMC)

◆ Climbing robot

◆ Micro robot

◆ Surgical robot

 

Experiences:

◆ 2021.1~,Associate Professor, Dept. of Mechanical and Energy Engineering, Southern University of Science and Technology.

◆ 2018.9~2020.12,Assistant Professor, Dept. of Mechanical and Energy Engineering, Southern University of Science and Technology.

◆ 2015.10~2018.9,Postdoctoral Research Fellow, Harvard University, School of Engineering and Applied Sciences and Wyss Institute.

 

Education:

◆ 2011.10~2015.06,PhD, University of Tokyo, Tokyo, Japan

◆ 2008.09~2011.07,Master, Xi’an Jiaotong University, Xi’an, China

◆ 2004.09~2008.07,Bachelor, Xi’an Jiaotong University, Xi’an, China

 

Honors and Awards:

◆ 2021: Shenzhen "Peacock Plan" Overseas High-level Class B Talent

◆ 2021: Shuren College "Outstanding College Mentor"

◆ 2023: SUSTech Inaugural "Outstanding Mentor and Friend" for Graduate Students

◆ 2023: 5th "Xiong Youlun Zhihu Outstanding Young Scholar Award"

 

Selected Publications:

-Wang, H., York, P., Chen, Y., Russo, S., Ranzani, T., Walsh, C., & Wood, R. J. (2021). Biologically inspired electrostatic artificial muscles for insect-sized robots. The International Journal of Robotics Research, 40(6-7), 895-922.

 

-Fan, D., Yuan, X., Wu, W., Zhu, R., Yang, X., Liao, Y., ... Wang, H.,& Qin, P. (2022). Self-shrinking soft demoulding for complex high-aspect-ratio microchannels. Nature Communications, 13(1), 5083.

 

-Xiong, Q., Liang, X., Wei, D., Wang, H., Zhu, R., Wang, T., ... & Wang, H. (2022). So-EAGlove: VR Haptic Glove Rendering Softness Sensation With Force-Tunable Electrostatic Adhesive Brakes. IEEE Transactions on Robotics, 38(6), 3450-3462.

 

-Xie, G., Fan, D., Wang, H., Zhu, R., Mao, J., & Wang, H. (2023). Strong Reliable Electrostatic Actuation Based on Self-Clearing Using a Thin Conductive Layer. Soft Robotics.

 

-Wei, D., Xiong, Q., Dong, J., Wang, H., Liang, X., Tang, S., Zhang, Y., Wang, H., & Wang, H. (2022). Electrostatic Adhesion Clutch with Superhigh Force Density Achieved by MXene-Poly (Vinylidene Fluoride–Trifluoroethylene–Chlorotrifluoroethylene) Composites. Soft Robotics.


传奇百家乐的玩法技巧和规则 | 百家乐官网登封代理| 互联网百家乐官网的玩法技巧和规则 | 木星百家乐官网的玩法技巧和规则| 大发888游戏平台888| 新澳门百家乐官网娱乐城| 大发888bet游戏平台| 做生意招财的花有哪些| 百家乐官网是怎样的| 大发888娱乐城优惠码lm0| 大发888在线娱乐城加盟合作| 百家乐官网娱乐城玩法| 上游棋牌下载| 百家乐打印机破解| 新梦想百家乐官网的玩法技巧和规则| 尊龙体育| 大发888官方 df888gfxzylc8| 钱百家乐取胜三步曲| 百家乐官网出老千视频| 德安县| 足球赌博网站| 太阳城真人娱乐城| 百家乐官网特殊计| 赌百家乐官网心里技巧| 通吃98| 德州扑克边池| 大发888真人游戏| 百家乐欧洲赔率| 摩纳哥百家乐官网的玩法技巧和规则 | 百家乐官网平注法口诀| 网上赌球| 元游棋牌游戏| 百家乐磁力录| 玩百家乐输澳门百家乐现场| 澳门百家乐官网才能| 缅甸百家乐官网网上投注| 皇冠网站| 现金游戏网| 今晚六合彩开奖结果| 利记国际娱乐| 皇家赌场007|