超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
WANG Hongqiang
Associate Professor
wanghq6@sustech.edu.cn


Homepage: wanglab.mee.sustech.edu.cn


Actuators are the primary basis in machines. They fundamentally determine the functions of machines and potentially affect their applications, and therefore, promote symbolic social progress (e.g., steam engines for the age of steam and electric motors for the age of electricity). Nowadays, however, the weakness and inadequacy of vastly used electromagnetic motors are impeding the technology progress in at least three significant fields: 1) for medical robots, actuators possessing satisfactory performances, e.g., compact size, high accuracy, and large stroke, remain to be developed; 2) bioinspired robots, particularly insect-inspired ones that limit by current actuators, are still not comparable to their natural counterparts regarding agility, robustness, and strength; 3) humanoid robots with conventional motors are not friendly enough to human collaborators, and soft, powerful, efficient, and accurately controllable actuators are highly desired.

 

To fundamentally address these problems, we have been exploring new approaches by rethinking basic principles and structures of actuators, and hence, implementing novel actuators distinguished from the conventional ones. Electrostatic actuation has drawn our vital interests due to its favorable features such as scalability, flexibility, lightweight, and low profile. We implemented a series of electrostatic film actuators and, by exploiting them, developed various robots with unique features (e.g., ultra-thin flexible climbing robots). We have also studied other actuation methods, such as flexible ionic polymer-metal composites for dexterous manipulators and an explosive actuator with a considerably high force-to-weight ratio for insect-scale water-air hybrid flying robots. In our future work, we will continue with this research methodology to implement more desirable novel actuators by exploring the basic physic principles and utilize them to build distinctive and valuable robots.

 

Research Areas:

◆ Electrostatic film actuators

◆ Electrostatic adhesion

◆ Ionic polymer-metal composite (IPMC)

◆ Climbing robot

◆ Micro robot

◆ Surgical robot

 

Experiences:

◆ 2021.1~,Associate Professor, Dept. of Mechanical and Energy Engineering, Southern University of Science and Technology.

◆ 2018.9~2020.12,Assistant Professor, Dept. of Mechanical and Energy Engineering, Southern University of Science and Technology.

◆ 2015.10~2018.9,Postdoctoral Research Fellow, Harvard University, School of Engineering and Applied Sciences and Wyss Institute.

 

Education:

◆ 2011.10~2015.06,PhD, University of Tokyo, Tokyo, Japan

◆ 2008.09~2011.07,Master, Xi’an Jiaotong University, Xi’an, China

◆ 2004.09~2008.07,Bachelor, Xi’an Jiaotong University, Xi’an, China

 

Honors and Awards:

◆ 2021: Shenzhen "Peacock Plan" Overseas High-level Class B Talent

◆ 2021: Shuren College "Outstanding College Mentor"

◆ 2023: SUSTech Inaugural "Outstanding Mentor and Friend" for Graduate Students

◆ 2023: 5th "Xiong Youlun Zhihu Outstanding Young Scholar Award"

 

Selected Publications:

-Wang, H., York, P., Chen, Y., Russo, S., Ranzani, T., Walsh, C., & Wood, R. J. (2021). Biologically inspired electrostatic artificial muscles for insect-sized robots. The International Journal of Robotics Research, 40(6-7), 895-922.

 

-Fan, D., Yuan, X., Wu, W., Zhu, R., Yang, X., Liao, Y., ... Wang, H.,& Qin, P. (2022). Self-shrinking soft demoulding for complex high-aspect-ratio microchannels. Nature Communications, 13(1), 5083.

 

-Xiong, Q., Liang, X., Wei, D., Wang, H., Zhu, R., Wang, T., ... & Wang, H. (2022). So-EAGlove: VR Haptic Glove Rendering Softness Sensation With Force-Tunable Electrostatic Adhesive Brakes. IEEE Transactions on Robotics, 38(6), 3450-3462.

 

-Xie, G., Fan, D., Wang, H., Zhu, R., Mao, J., & Wang, H. (2023). Strong Reliable Electrostatic Actuation Based on Self-Clearing Using a Thin Conductive Layer. Soft Robotics.

 

-Wei, D., Xiong, Q., Dong, J., Wang, H., Liang, X., Tang, S., Zhang, Y., Wang, H., & Wang, H. (2022). Electrostatic Adhesion Clutch with Superhigh Force Density Achieved by MXene-Poly (Vinylidene Fluoride–Trifluoroethylene–Chlorotrifluoroethylene) Composites. Soft Robotics.


百家乐的打法技巧| 百家乐官网永利娱乐城| 百家乐视频一下| 百家乐投注网中国| 免费百家乐缩水工具| 百家乐庄闲必胜手段| 澳门赌百家乐打法| 大发888官方6222.| 百家乐官网娱乐城怎么样| 百家乐投注心得| 太阳城线上娱乐城| 内黄县| 金银岛百家乐官网的玩法技巧和规则 | 大发888娱乐城娱乐城| 六合彩现金网| 百家乐官网筹码盒| 网络百家乐官网赌博视频| 澳门百家乐赢钱技术| 皇冠现金网址| 百家乐官网秘诀| 百家乐投注外挂| 大发888信誉平台| 百家乐官网路单规则| 网上百家乐网站导航| 立博国际博彩公司| 百家乐官网网站可信吗| 百家乐赌场娱乐网规则| 百家乐官网赌场作弊| 2016虎和蛇合作做生意| 澳门顶级赌场百家乐| 百家乐官网透视牌靴| 百家乐送现金200| 双柏县| 24山水口吉凶图| 顶级赌场371betcwm| 蓝盾百家乐官网平台| 威尼斯人娱乐网上百家乐的玩法技巧和规则 | 皇冠百家乐代理网址| 盛世国际娱乐博彩| 百家乐官网娱乐城怎么样| 百家乐珠仔路|