超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
Xuyang Wu
Associate Professor
wuxy6@sustech.edu.cn

Xuyang Wu received the Bachelor of Science degree in Applied Mathematics from Northwestern Polytechnical University, China, in 2015, and the Ph.D. degree in Communication and Information Systems from the University of Chinese Academy of Sciences, China, in 2020. From 2020 - 2023, He was a postdoctoral researcher at KTH Royal Institute of Technology, Sweden. He is currently an associate professor in the School of  Automation and Intelligent Manufacturing (AiM, Former: School of System Design and Intelligent Manufacturing), Southern University of Science and Technology, Shenzhen, China. His research interests include distributed and large-scale optimization, machine learning, and related areas. He has published 7 first-authored papers on top-tier journals in the control society and AI conferences, including 5 papers on IEEE Transactions on Automatic Control (IEEE TAC) and Automatica, and 2 papers on International Conference on Machine Learning (ICML).


Learn more: http://xuyangwu.github.io


Education Background

◆ Sep. 2015 - Aug. 2020
Ph.D student, Communication and Information Systems, The University of Chinese Academy of Sciences, China.

◆ Sep. 2011 - Jul. 2015

B.S. student, Applied Mathematics, Northwestern Polytechnical University, China.


Working Experience

◆ Jun. 2025 - present.
Associate Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.

◆ Feb. 2024 - Jun. 2025.

Assistant Professor, School of Automation and Intelligent Manufacturing (AiM), Southern University of Science and Technology, China.
◆ Dec. 2023 - Jan. 2024.

Visiting Scholar, Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong
◆ Dec. 2020 - Nov. 2023
Postdoctoral Researcher, Division of Decision and Control Systems, KTH Royal Institute of Technology, Sweden.


Research Area

Distributed and large-scale optimization, machine learning, and related areas.


Publications

[1] X. Wu, S. Magnusson, and M. Johansson. “Distributed Safe Resource Allocation using Barrier Functions”, Automatica, 2023.

[2] X. Wu, H.R. Feyzmahdavian, S. Magnusson, M. Johansson. “Delay-adaptive Step-sizes for Asynchronous Learning”, Proc. International Conference on Machine Learning (ICML), 2022.

[3] X. Wu, C. Liu, S. Magnusson, M. Johansson. “Delay-agnostic Asynchronous Coordinate Update Algorithm”, Proc. International Conference on Machine Learning (ICML), 2023.

[4] X. Wu, H. Wang, and J. Lu. “Distributed Optimization with Coupling Constraints”, IEEE Transactions on Automatic Control, 2023.

[5] X. Wu and J. Lu. “A Unifying Approximate Method of Multipliers for Distributed Composite Optimization”, IEEE Transactions on Automatic Control, 2023.

[6] X. Wu, Z. Qu, and J. Lu. “A Second-Order Proximal Algorithm for Consensus Optimization”, IEEE Transactions on Automatic Control, 2021.

[7] X. Wu and J. Lu. “Fenchel Dual Gradient Methods for Distributed Convex Optimization over Time-varying Networks”, IEEE Transactions on Automatic Control, 2019.


百家乐视频世界| 百家乐买对子技巧| 仁怀市| 百家乐官网专业术语| 百家乐桌面| 金赞娱乐| 长春百家乐官网的玩法技巧和规则 | 大发888 dafa888 gzsums| 澳门百家乐官网登陆网址| 金沙国际娱乐| 长江百家乐官网的玩法技巧和规则 | 澳门赌场美女| 百家乐怎么才赢| 丰合国际网上娱乐| 西安市| 威尼斯人娱乐最新地址| 百家乐官网二十一点游戏| 百家乐庄最高连开几把| BB百家乐官网HD| 顶级赌场网址| 战神百家乐官网的玩法技巧和规则| 大发888游戏平台dafa888 gw| 德州扑克中文版| 新彩百家乐官网的玩法技巧和规则 | 百家乐博娱乐网| 百家乐官网网络公式| 百家乐制胜秘| 免费百家乐官网预测软件| 516棋牌游戏加速器| 大佬百家乐现金网| 百家乐官网游戏规则介绍| 大发888 客服| 百家乐庄闲出现几率| 跨国际百家乐的玩法技巧和规则| 百家乐官网游戏网站| 诏安县| 全讯网qx1860.com| 24山向吉凶| 百家乐官网有赢钱公式吗| 兴城市| 娱乐城注册体验金|