超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
Wen Zhou
Associate Professor
zhouw@sustech.edu.cn

Self-introduction

Dr. Wen Zhou did his PhD study at the Institute of Botany, Chinese Academy of Sciences. As a Benacerraf postdoctoral fellow in immunology and through a Charles A. King Trust Postdoctoral Fellowship at Harvard medical school and the Dana Farber Cancer Institute (2017–2021), Dr. Wen Zhou has given his extensive experience and training in the field of immunology. His research in postdoc has particularly focused on cGAS-STING immunity pathway as a paradigm for anti-pathogen and anti-tumor signaling. His research provides mechanistic advances in our understanding of how immune cells sense cytosolic DNA in health and diseases.

After joining SUSTech as an assistant professor in April 2021, Dr. Zhou’s lab will seek to reveal the importance of phase separation as a new form regulation in immunity, and to discover new nucleic acid receptors.

 

Research Interests

We are working to understand the molecular mechanisms of innate immune responses to pathogens and tumor. Our lab use a combination of biochemistry, cell biology and structural biology to study two main questions: (1) How immune cells precisely control immune surveillance and regulation? (2) What’s the uncharacterized nucleic acid receptors? We are focusing on:

1. Phase separation as a new form regulation in immunity: Phase separation refers to the formation of liquid droplets in cells due to the weak interactions by numerous macrobiomolecules. Our knowledge of phase separation in immunity is quite limited. We are working to determine the important roles of phase separation in innate immune signaling.

2. Discover novel nucleic acid receptors: Nucleic acids (DNA and RNA), serve as dangerous signals, are able to induce potent immune responses. Nucleic acid receptors are the key components that control innate immune responses. Bioinformatics analysis suggests that a large number of potential nucleic acid receptors are waiting for discovery. We are working to screen and discover new nucleic acid receptors to understand nucleic acid immunity across evolution.

 

Professional Experience:

◆ 2021.04-Present: Assistant Professor (Southern University of Science and Technology, School of Life Sciences)

◆ 2017.07-2021.03: Postdoctoral Fellow (Harvard Medical School / Dana-Farber Cancer Institute)

 

Educational Background:

◆ 2009-2017: Doctorate in Developmental Biology (Chinese Academy of Sciences, Institute of Botany)

◆ 2005-2009: Bachelor of Science in Biological Technology (University of Science and Technology Beijing)

 

Honors & Awards

◆2020 Charles A. King Trust Fellowship Award, USA

◆2019 Benacerraf Postdoctoral Fellowship Award, USA

◆2019 Harvard Chinese Life Sciences Distinguished Research Award, USA

◆2018 Distinguished Dissertation Award, the Chinese Academy of Sciences

◆2017 CAS Presidential Scholarship, the Chinese Academy of Sciences

 

Selected Publication:

1. Zhou W*, Whiteley AT*, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, Gray NS, Mekalanos JJ, Kranzusch PJ (2018). Structure of the human cGAS–DNA complex reveals enhanced control of immune surveillance. Cell174: 300–311. PMID: 30007416 (* co-first authors)

2. Zhou W, Mohr L, Maciejowski J, Kranzusch PJ (2021). cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell81: 739–755. PMID: 33606975

3. Zhou W*, Lu Q*, Li Q, Wang L, Ding S, Zhang A, Wen X, Zhang L, Lu C (2017). PPR-SMR protein SOT1 has RNA endonuclease activity. PNAS114: E1554–E1563. PMID: 28167782 (* co-first authors)

4. Zhou W, Whiteley AT, Kranzusch PJ (2019). Analysis of human cGAS activity and structure. Methods in Enzymology625: 13–40. PMID: 31455523

5. Barnett KC, Coronas-Serna JM, Zhou W, Ernandes MJ, Cao A, Kranzusch PJ, Kagan JC (2019). Phosphoinositide Interactions Position cGAS at the Plasma Membrane to Ensure Efficient Distinction between Self- and Viral DNA. Cell176: 1432–1446.e11. PMID: 30827685

6. Wang X, Yang Z, Zhang Y , Zhou W, Zhang A, Lu C (2020). Pentatricopeptide repeat protein PHOTOSYSTEM I BIOGENESIS FACTOR2 is required for splicing of ycf3. J Integr Plant Biol11: 1741–1761.PMID: 32250043

7. Zhang L, Zhou W, Che L, Rochaix JD, Lu C, Li W, Peng L (2019). PPR protein BFA2 is essential for the accumulation of the atpH/F transcript in chloroplasts. Frontiers in Plant Science10: 446. PMID: 31031784

8. Wang L, Li Q, Zhang A, Zhou W, Jiang R, Yang Z, Yang H, Qin X, Ding S, Lu Q, Wen X, Lu C (2017).The phytol phosphorylation pathway is essential for the biosynthesis of phylloquinone, which is required for photosystem I stability in Arabidopsis. Mol Plant10: 183–196. PMID: 28007557

9. Zhong L, Zhou W, Wang H, Ding S, Lu Q, Wen X, Peng L, Zhang L, Lu C (2013). Chloroplast small heat shock protein HSP21 interacts with plastid nucleoid protein pTAC5 and is essential for chloroplast development in Arabidopsis under heat stress. Plant Cell25: 2925–2943. PMID: 23922206

澳门百家乐官网怎么赢钱| 利都百家乐官网国际赌场娱乐网规则| 乐百家百家乐官网游戏| 百家乐mediacorp| 百家乐官网开户优惠多的平台是哪家 | 百家乐官网赌场作弊| 太阳城雨伞| 百家乐扑克桌布| 如何玩百家乐官网游戏| 博彩网皇冠| 永康百家乐赌博| 江山百家乐官网的玩法技巧和规则| 六合彩曾道人| 基础百家乐规则| 永利百家乐娱乐| 玩百家乐官网澳门368娱乐城| 金莎国际娱乐| 德州扑克入门与提高| 百家乐娱乐网真人娱乐网| 博彩百家乐官网带连线走势图| 德兴市| 青岛棋牌英雄| 有破解百家乐仪器| 怎样玩百家乐官网的玩法技巧和规则 | 推二八杠技巧| 可以玩百家乐的博彩公司| 月亮城百家乐官网的玩法技巧和规则 | 新时代百家乐官网的玩法技巧和规则| 8彩娱乐| 世界顶级赌场排名| 威尼斯人娱乐城客户端| 网络百家乐路子玩| 最新百家乐官网网评测排名| 博士百家乐官网现金网| 通山县| 澳门百家乐官网论谈| 陇西县| 网上真钱游戏| 娱乐城开户送38体验金| 大发888游戏平台hana| 大发888df登录|