超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

師資

EN       返回上一級       師資搜索
熊捷
講席教授
xiongj@sustech.edu.cn

教育經歷
1992年,北卡羅來納大學教堂山分校,統計系,獲哲學博士學位;
1986年,北京大學,統計系,獲統計碩士學位;
1983年,北京大學,數學系獲數學學士學位;

 

工作經歷
2017年12月至今,南方科技大學,數學系,講席教授;
2012年至2017年,澳門大學,數學系,教授;
2004年至2014年,田納西大學,數學系,教授;
1999年至2004年,田納西大學,數學系,副教授;
1993年至1999年,田納西大學,數學系,助理教授;
1992年至1993年,北卡羅來納大學夏洛特分校,訪問講師;
1986年至1988年,北京大學,指導員;

 

榮譽及獲獎
Humboldt Research Fellowship, 2003.
Canada Research Chair in Stochastic Processes and Filtering. 2002.
University of Tennessee-Oak Ridge National Lab Science Alliance research award. 1996-2000.
Graduate School Dissertation Fellowship. 1992.
George E. Nicholson, Jr. Fellowship, 1989.

 

Selected Publications
1.Jie Xiong (2013). Three Classes of Nonlinear Stochastic Partial Differential Equations. World Scientific.
2.J. Xiong (2008). An Introduction to Stochastic Filtering Theory, Oxford Graduate Texts in Mathematics. 18. Oxford University Press.
3.T. Hida, R. Karandikar, H. Kunita, B. Rajput, S. Watanabe and J. Xiong (editors). Stochastics in Finite and Infinite Dimensions: In Honor of Gopinath Kallianpur. pp. 500. Birkhauser, 2000.
4.G. Kallianpur and J. Xiong (1995). Stochastic Differential Equations on Infinite Dimensional Spaces, IMS Lecture notes-monograph series, Vol. 26.
5.R. Wang, J. Xiong and L. Xu (2017). Irreducibility of stochastic real Ginzburg-Landau equation driven by stable noises and applications. Bernoulli, 23, No. 2, 1179-1201.
6.Z. Dong, J. Xiong, J. L. Zhai and T. S. Zhang (2017), A Moderate Deviation Principle for 2-DStochastic Navier-Stokes Equations Driven by Multiplicative L′evy Noises. J. Funct. Anal., 272, no. 1, 227-254.
7.J. Xiong and X. Yang (2016) Superprocesses with interaction and immigration. Stochastic Processes Appl. 126, 3377-3401.
8.Y. Chen, H. Ge, J. Xiong and L. Xu (2016). The Large Deviation Principle and Fluctuation Theorem for the Entropy Product Rate of a Stochastic Process in Magnetic Fields. J. Math. Physics. 57, 073302
9.F. Wang, J. Xiong and L. Xu (2016). Asymptotics of Sample Entropy Production Rate for Stochastic Differential Equations. Journal Statistical Physics.163, no. 5, 1211-1234,
10.S. Lenhart, J. Xiong and J. Yong (2016). Optimal Controls for Stochastic Partial Differential Equations with an Application in Controlling Rabbit Population. SIAM Control. Optim. 54, no. 2, 495-535
11.J.T. Shi, G.C. Wang and J. Xiong (2016). Leader-Follower Stochastic Differential Game with Asymmetric Information and Applications. Automatica J. IFAC 63, 60-73.
12.G. Wang, Z. Wu and J. Xiong (2015). A linear-quadratic optimal control problem of forward-backward stochastic differential equations with partial information. IEEE Transactions on Automatic Control 60, No.11, 2904-2916.
13.P. Fatheddin and J. Xiong (2015). Large deviation principle for some measure-valued processes. Stoch. Proce. Appl. 125, no. 3, 970-993.
14.Zenghu Li, Huili Liu, Jie Xiong and Xiaowen Zhou (2013). The reversibility and an SPDE for the generalized Fleming-Viot processes with mutation. Stoch. Proce. Appl.123, 4129-4155.
15.J. Xiong (2013). Super-Brownian motion as the unique strong solution to a SPDE. Ann. Probab. 41, No. 2, 1030-1054.
16.G.C. Wang, Z. Wu and J. Xiong (2013). Maximum principles for optimal control of forward-backward stochastic systems under partial information. SIAM J. Control Optim. 51, No. 1, 491-524.
17.Z. Li, H. Wang, J. Xiong and X. Zhou (2012), Joint continuity of the solutions to a class of nonlinear SPDEs. Probab. Theory Relat. Fields 153, No. 3, 441-469.
18.J. Detemple, W. Tian and J. Xiong (2012). Optimal stopping with reward constraints. Financial Stochastics 16, 423-448.
19.L. Mytnik, J. Xiong and O. Zeitouni (2011). Snake representation of a superprocess in random environment. ALEA, Lat. Am. J. Probab. Math. Stat. 8, 335–377.
20.J. Huang, G. Wang and J. Xiong (2009). A Maximum Principle for Partial Information Backward Stochastic Control Problems with Applications. SIAM J. Control Optim.40, No. 4, 2106-2117.
21.K.J. Lee, C. Mueller and J. Xiong (2009). Some properties for superprocess over a stochastic flow. Ann. Inst. H. Poincar\’e Probab. Statist. 45, No. 2, 477-490.
22.J. Xiong and X.Y. Zhou (2007). Mean-Variance portfolio selection under partial information. SIAM J. Control Optim. 46, no. 1, 156–175.
23.Z. Li, H. Wang and J. Xiong. (2004). A degenerate stochastic partial differential equation for superprocesses with singular interaction. Probab. Th. Relat. Fields 130, 1-17.
24.J. Xiong (2004). A stochastic log-Laplace equation. Ann. Probab. 32, 2362-2388.
25.D. Dawson, A. Etheridge, K. Fleischmann, L. Mytnik, E. Perkins, and J. Xiong (2002). Mutually catalytic processes in the plane: Finite measure states. Ann. Probab. 30, no. 4, 1681–1762.
26.K. Fleischmann and J. Xiong (2001). A cyclically catalytic branching model, Annals of Probability, 2, 820-861.
27.T. Kurtz and J. Xiong (1999). Particle representations for a class of nonlinear SPDEs. Stochastic Processes and their Applications 83, 103-126.
28.G. Kallianpur and J. Xiong, Large deviation principle for a class of stochastic partial differential equations, Annals of Probability, 24, 1996, 320-345.
29.G. Kallianpur and J. Xiong, Diffusion approximation of stochastic differential equations driven by Poisson random measures, Annals of Applied Probability, 5, 1995, 493-517.
30.J. Xiong and M. P. Qian (1990). Construction and properties of coupled diffusion processes, Acta Math. Appl. Sinica, 13, 391-400 (in Chinese).

百家乐投住系统| 大发888 dafa888 octbay| 方形百家乐官网筹码| 太阳城正网| 网上百家乐赌法| 百家乐官网游戏下裁| 亿酷棋牌世界官网| 百家乐现金网排名| 百家乐官网群boaicai| 顶尖娱乐城开户| 任我赢百家乐软件| 银河百家乐官网的玩法技巧和规则| 济州岛娱乐场小伊| 58百家乐的玩法技巧和规则| 网上百家乐官网公司| 河西区| 大发888bet娱乐场下载| 百家乐网上娱乐场开户注册| 金三角百家乐官网的玩法技巧和规则 | 百家乐最好投| 百家乐体育nba| 百家乐官网评测| 白朗县| 基础百家乐博牌规| 百家乐网上投注代理商| 仙游县| 香港六合彩开奖现场直播| 鼎龙百家乐的玩法技巧和规则 | 赌场百家乐官网的玩法技巧和规则| 百家乐官网如何视频| 尊龙备用网址| 大发888 大发888官网| 香港百家乐的玩法技巧和规则| 百家乐不倒翁注码| 租房做生意如何注意风水问题| 赌场百家乐官网欺诈方法| 五河县| 六合彩图库| 水果机教程| 大发888 登陆不上| 百家乐博百家乐的玩法技巧和规则|