超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

Faculty

中文       Go Back       Search
Fang Kong
Assistant Professor
kongf@sustech.edu.cn

Research Interests

Online Learning, Reinforcement Learning, Machine Learning


Education

2020.9-2024.6 Shanghai Jiao Tong University, PhD in Computer Science

2016.9-2020.6 Shandong University, Bachelor’s Degree in Software Engineering


Research Experiences

2023.2-2023.8 The Chinese University of Hong Kong, Research Assistant

2022.7-2024.7 Tencent WXG, Research Intern

2021.12-2022.5 Microsoft Research Asia, Research Intern

2021.6-2021.8 Alibaba DAMO Academy, Research Intern


Publications

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.

大发888怎么下载不了| 百家乐官网知道| 大发888登录下载| 澳门百家乐官网怎洋赢钱| 克拉克百家乐官网的玩法技巧和规则 | 博狗百家乐官网的玩法技巧和规则 | 网上百家乐官网博彩正网| 百家乐十佳投庄闲法| 威尼斯人娱乐场骗人| 宾利百家乐官网游戏| 金榜百家乐官网的玩法技巧和规则| 环球百家乐的玩法技巧和规则| 永靖县| 至尊百家乐娱乐场开户注册| 太阳城百家乐官网出千技术| 大发888体育网| 百家乐官网技巧打| 大发888游戏平台3403| 网上百家乐官网分析软件| 做生意如何风水| 沙龙娱乐| 网上百家乐辅助软件| 百家乐官网有电脑游戏吗| A8百家乐现金网| 百家乐官网tie| 百家乐娱乐官网| 百家乐官网游戏作弊| 大发888真钱娱乐下载| 澳门百家乐官网游戏官网| 百家乐官网视频美女| 二八杠的玩法| 百家乐赌博娱乐| 大发888游戏客户端| 喜达百家乐官网的玩法技巧和规则| 百家乐官网的保单打法| 娱乐城设计| 皇冠网百家乐赢钱| 百家乐官网游戏解密| 188比分| 168棋牌游戏| 网络百家乐官网会输钱的多吗|