超级皇冠网分布图-皇冠网hg9388.com_百家乐统计工具_全讯网帝国cms网站源 (中国)·官方网站

師資

EN       返回上一級       師資搜索
孔芳
助理教授
kongf@sustech.edu.cn

研究領域

在線學習,強化學習,機器學習


教育經歷

2020.9-2024.6 上海交通大學,計算機科學與技術,工學博士

2016.9-2020.6 山東大學,軟件工程,工學學士


科研經歷

2023.2-2023.8 香港中文大學,科研助理

2022.7-2024.7 騰訊WXG,研究型實習生

2021.12-2022.5 微軟亞洲研究院,研究型實習生

2021.6-2021.8 阿里巴巴達摩院,研究型實習生


學術成果

  1. Yu Xia*, Fang Kong*, Tong Yu, Liya Guo, Ryan A. Rossi, Sungchul Kim, Shuai Li, “Convergence-Aware Online Model Selection with Time-Increasing Bandits”, The Web Conference (WWW), 2024.

  2. Fang Kong, Shuai Li, “Improved Bandits in Many-to-one Matching Markets with Incentive Compatibility”, Proceedings of the 38th Annual AAAI Conference on Artificial Intelligence (AAAI), 2024. 

  3. Fang Kong*, Xiangcheng Zhang*, Baoxiang Wang, Shuai Li, “Improved Regret Bounds for Linear Adversarial MDPs via Linear Optimization”, Transactions on Machine Learning Research (TMLR), 2024.

  4. Fang Kong, Canzhe Zhao, Shuai Li, “Best-of-three-worlds Analysis for Linear Bandits with Follow-the-regularized-leader Algorithm”, Proceedings of the 36th Conference on Learning Theory (COLT), 2023.

  5. Fang Kong, Jize Xie, Baoxiang Wang, Tao Yao, Shuai Li. “Online Influence Maximization under Decreasing Cascade Model”, Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2023.

  6. Yichi Zhou, Fang Kong, Shuai Li, “Stochastic No-Regret Learning for General Games with Variance Reduction”, International Conference on Learning Representations (ICLR), 2023.

  7. Fang Kong, Shuai Li, “Player-optimal Stable Regret for Bandit Learning in Matching Markets”, Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2023.

  8. Fang Kong, Yichi Zhou, Shuai Li, “Simultaneously Learning Stochastic and Adversarial Bandits with General Graph Feedback”, International Conference on Machine Learning (ICML), 2022.

  9. Fang Kong, Junming Yin, Shuai Li, “Thompson Sampling for Bandit Learning in Matching Markets”, International Joint Conference on Artificial Intelligence (IJCAI), 2022.

  10. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “The Hardness Analysis of Thompson Sampling for Combinatorial Semi-bandits with Greedy Oracle”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2021.

  11. Fang Kong, Yueran Yang, Wei Chen, Shuai Li, “Combinatorial Online Learning based on Optimizing Feedbacks (in Chinese)”, Big Data Research, 2021.

  12. Shuai Li, Fang Kong, Kejie Tang, Qizhi Li, Wei Chen, “Online Influence Maximization under Linear Threshold Model”, Proceedings of the Conference on Neural Information Processing Systems (NeurIPS), 2020.

  13. Fang Kong, Qizhi Li, Shuai Li, “A Survey on Online Influence Maximization” (in Chinese), Computer Science, 2020.



百家乐官网是娱乐场最不公平的游戏 | 太阳城团购| 澳门百家乐官网玩法心得技巧| 百家乐免費游戏| 网上百家乐官网赌场娱乐网规则| 回力百家乐的玩法技巧和规则| 高州市| 澳门百家乐有赢钱的吗| 百家乐官网投注软件有用吗| 百家乐六亿财富| 银泰娱乐城| 澳门赌百家乐能赢钱吗| 巴彦县| 安卓水果机游戏下载| 乐宝百家乐娱乐城| 百家乐官网赌博规律| 大发888赌场 游戏平台| 百家乐官网真人游戏娱乐平台| 缅甸百家乐娱乐场开户注册| 百家乐官网博赌场| 垣曲县| 威尼斯人娱乐城官方地址| 百家乐的打法技巧| 百家乐官网2珠路投注法| 舟山星空棋牌游戏大厅下载| 利澳百家乐娱乐城| 百家乐官网百家乐官网技巧| 百家乐官网小型抽水泵| 长治市| 洪泽县| 易胜博棋牌| 大发8881| 全讯网找新全讯网| 飞天百家乐官网的玩法技巧和规则 | 网上百家乐官网骗人的| 大发888娱乐城casino| 赌场百家乐是如何| 德晋百家乐的玩法技巧和规则| 金龍百家乐官网的玩法技巧和规则 | 皇冠现金网骗人| 缅甸百家乐赌城|